A genetic network that suppresses genome rearrangements in Saccharomyces cerevisiae and contains defects in cancers

نویسندگان

  • Christopher D. Putnam
  • Anjana Srivatsan
  • Rahul V. Nene
  • Sandra L. Martinez
  • Sarah P. Clotfelter
  • Sara N. Bell
  • Steven B. Somach
  • Jorge E.S. de Souza
  • André F. Fonseca
  • Sandro J. de Souza
  • Richard D. Kolodner
چکیده

Gross chromosomal rearrangements (GCRs) play an important role in human diseases, including cancer. The identity of all Genome Instability Suppressing (GIS) genes is not currently known. Here multiple Saccharomyces cerevisiae GCR assays and query mutations were crossed into arrays of mutants to identify progeny with increased GCR rates. One hundred eighty two GIS genes were identified that suppressed GCR formation. Another 438 cooperatively acting GIS genes were identified that were not GIS genes, but suppressed the increased genome instability caused by individual query mutations. Analysis of TCGA data using the human genes predicted to act in GIS pathways revealed that a minimum of 93% of ovarian and 66% of colorectal cancer cases had defects affecting one or more predicted GIS gene. These defects included loss-of-function mutations, copy-number changes associated with reduced expression, and silencing. In contrast, acute myeloid leukaemia cases did not appear to have defects affecting the predicted GIS genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review of Driver Genetic Alterations in Thyroid Cancers

Thyroid cancer is a frequent endocrine related malignancy with continuous increasing incidence. There has been moving development in understanding its molecular pathogenesis recently mainly through the explanation of the original role of several key signaling pathways and related molecular distributors. Central to these mechanisms are the genetic and epigenetic alterations in these pathways, su...

متن کامل

Saccharomyces cerevisiae as a model system to define the chromosomal instability phenotype.

Translocations, deletions, and chromosome fusions are frequent events seen in cancers with genome instability. Here we analyzed 358 genome rearrangements generated in Saccharomyces cerevisiae selected by the loss of the nonessential terminal segment of chromosome V. The rearrangements appeared to be generated by both nonhomologous end joining and homologous recombination and targeted all chromo...

متن کامل

شناسایی یک حذف بزرگ در DNA میتوکندریایی بیماران ایرانی مبتلا به آریتمی قلبی

Introduction: Long QT Syndrome is one of the arrhythmic disorders of the heart that causes sudden cardiac death in patients. Most of the investigations have focused on nuclear genome for finding genetic defects in these disorders, but some of the cases with LQTS cannot be explained by mutations of identified genes. It prompted the authors to focus on the mitochondrial DNA and monitor rearrangem...

متن کامل

Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae

Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the r...

متن کامل

Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae.

Cancer cells show increased genome rearrangements, although it is unclear what defects cause these rearrangements. Previous studies have implicated the Saccharomyces cerevisiae replication checkpoint in the suppression of spontaneous genome rearrangements. In the present study, low doses of methyl methane sulfonate that activate the intra-S checkpoint but not the G1 or G2 DNA damage checkpoints...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016